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ABSTRACT: A 3-parameter generalization of the Lunin-Maldacena background has recently
been constructed by Frolov. This v;-deformed background is non-supersymmetric. We con-
sider strings in this v;-deformed R x S® background rotating in three orthogonal planes (the
3-spin sector) in a fast motion limit, in which the total angular momentum J is assumed
to be large. We show that there exists a consistent transformation which takes the unde-
formed equations of motion into the 7;-deformed equations of motion. This transformation
is used to construct a Lax pair for the bosonic part of the ~;-deformed theory in the fast
motion limit. This implies the integrability of the bosonic part of the ~;-deformed string
sigma model in the fast motion limit.
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1. Introduction

The original conjecture of Maldacena [, which was further elaborated in [}, BJ, claims a
correspondence between string theory in an AdSs x S° background and A = 4 Super Yang-
Mills (SYM) theory. It is well known [f] that one can construct a marginal deformation of
N = 4 SYM theory to obtain an N' = 1 superconformal SYM theory. These include the
so-called (3-deformations. Lunin and Maldacena have found gravity backgrounds which are
conjectured to be dual to these G-deformations [[ff|. Evidence for this conjecture includes
the matching of the energies of semi-classical strings to the anomalous dimensions of cor-
responding operators in the gauge theory [f] and a study of the pp-wave limit of the string
theory together with an identification of the dual BMN operators [f]-[. Furthermore,

the central charge was reproduced in the dual gravitational description and shown to be



independent of the deformation parameter [[[0, [[]]. This verifies on the string theory side
that G-deformations are indeed marginal. Frolov was able to find a Lax pair representation
for the B-deformed string theory in the case of a real deformation parameter 3 = v [[[7].
The crucial insight in this work was that the Lunin-Maldacena deformation, in the case
of a real deformation parameter -, can be realized as a TsT transformation of the string
action with shift parameter 5 = v/\vy, where VA = R% and R is the radius of S°.

Frolov also constructed a non-supersymmetric y;-deformed string theory by performing
a series of three TsT transformations with shift parameters 5; = v/Av; on the string action
and conjectured a correspondence to a non-supersymmetric v;-deformed SYM theory [[Z].!
Remarkably, this 3-parameter deformation also admits a Lax pair representation. Evidence
for this proposed correspondence was given by Frolov, Roiban and Tseytlin [[[j], who
matched the semi-classical energies of strings to the anomalous dimensions of gauge theory
operators using a -;-deformed spin chain representation. Furthermore, agreement was
also found between the string and gauge theory descriptions of open strings attached to
unstable giant gravitons [[[6]. These comparisons are particularly interesting because any
agreement found cannot be the result of supersymmetry on either side, since these ~;-
deformed string and gauge theories are non-supersymmetric. The special case of the ~;-
deformed background with equal shift parameters v; = « is the same as the (-deformed
background with real G = ~.

The conjectured gauge/string theory duality is of the strong-weak coupling type with
respect to the 't Hooft coupling. This makes comparison between the two sides difficult. In
this regard, studying a semi-classical limit of the theory is surprisingly fruitful as it allows
perturbative computations in the gauge theory to be matched to classical computations in
the dual gravitational theory [[[7, [§].

The semi-classical limit formulated and used in [E, L3, E,@]’ which will henceforth
be known as the fast motion limit, will now be described in detail. We consider strings
in R x S° rotating in three orthogonal planes (the 3-spin sector)? and assume that the
total angular momentum J is large. The string action in the fast motion limit is then
obtained by isolating the “fast” angular coordinate (which corresponds to the total angular
momentum), choosing a suitable gauge and assuming that the time derivatives of the radii
and other “slow” angular coordinates are small (of order A = %) The gauge generally
used is known as the non-diagonal uniform gauge and ensures that the angular momentum
is spread evenly along the string (this makes comparison to the effective action of the
corresponding spin chain on the gauge theory side possible).

The lagrangian governing the dynamics of strings rotating in three orthogonal planes
in the ;-deformed R x S° background in the fast motion limit was derived in [[§] and shown
to be equivalent on the gauge theory side to the effective action of a ;-deformed spin chain
in the continuum limit (where the length of the spin chain J becomes large). Now, for the
case of a similar lagrangian in the undeformed background (which was originally derived
in [22- R4, but was also obtained in [[§] by setting v;=0), the undeformed equations of

IFor further discussions of backgrounds arising from TsT transformations see [B, .
2Multispin solutions describing rotating strings in the Lunin-Maldacena background were found in [E]



motion are equivalent to a Landau-Lifshitz equation for which there is a known Lax pair
representation [[[§, BJ]. It is not known, however, whether the dynamics following from
the ~y;-deformed lagrangian are integrable. In this article we will construct a Lax pair
representation for the ~;-deformed equations of motion, thereby settling this issue.

In section ] we review the undeformed case. The undeformed equations of motion in
the fast motion limit are derived and shown to be equivalent to the zero curvature condition
for the undeformed Lax pair. In section [ we derive the +;-deformed equations of motion
and construct a transformation which takes the undeformed equations of motion into these
~v;-deformed equations of motion. We then choose a suitable gauge for the undeformed Lax
pair and use this transformation to derive a 7;-deformed Lax pair. A brief conclusion is then
given in section [ and some of the more lengthy calculations are included in appendices [A],

and [d.
2. Strings in the undeformed background

2.1 Equations of motion in the undeformed background

Let us consider strings in the undeformed R x S° background (at the center of AdSs)
rotating in three orthogonal planes. The total angular momentum is J = J; + Jo + J3,
where J; is the angular momentum associated with the i angular coordinate ¢; (where
i=1, 2, 3).3 In the fast motion limit, where the total angular momentum .J is large and
the time derivatives of the radii and “slow” angular coordinates are assumed to be of order
A= % = %, the string action to first order in A (derived in [[[F]) is

S = J/dT;l—;[L+O(5\2)], 2.1)

where the lagrangian in the undeformed background is*

3 N 3 3 - ~
LR D SRS S IR IRy P B I S

i=1 i=1 4,j=1 i=1

The last term is a constraint term. Re-defining 7 — %7’ and £ — —%E gives

3

3 2 3 ~ ~ 3
L==) ri¢gi+ %Z(TQ)Q + % > i ((g; N &;)2 n %A (er ~ 1) , (2.3)
=1 =1 i,j=1 i=1

1<j

The equations of motion, obtained by varying with respect to r; and b; respectively,
are

. 3
= = ~ 0\ 2
r! = —2rid; + 1y E 7“;%, ((b; — %) + Ar;, (2.4)
k=1

$We make use of the notation of @] for the angular coordinates in the undeformed and ~;-deformed
backgrounds.

Tt should be noted that henceforth the Einstein summation convention will not be used. All summations
will be explicitly mentioned so as to avoid confusion.



o= ) (9 — o) + e D0 (3 - 31) (2.5)

3 3
k=1 k=1

while varying with respect to the Lagrange multiplier A gives the constraint equation
3

> ’I“i2 =1.

i=1

Now, assuming this constraint is satisfied, the equations of motion (2.4) and (.§) are
equivalent to

= 3 x ~ N\ 2 3 = ~\2
""jT‘;/ _ ’l"iT‘;l = 2’[“i7‘j (gbj — gbZ) + iy Z T‘]% <¢; — (ﬁ%) — Ty Z ’I“]% (gb; — ¢;€> R (26)
k=1 k=1

3 L 3 L
7Ty 4 it =T Z i (riry) ((b; - (]52) + 7 Z T (riry) ((ﬁ; - (ﬁﬁc) +
k=1 k=1
1 3 = = 1 3 = =
iy vk (0F = 61 ) + 5miny > rE (9 — of). (2.7)
k=1 k=1

Notice that the constraint term cancels out of equation (R.4).

2.2 Lax pair in the undeformed background

A Lax pair for this undeformed system [[[§], which is a function of the spectral parameter

x, is
D, = 8# — AM with ©4=0,1, (2.8)
where
1 31
AO = E[N’alN],I—{—;ZN‘TZ, (29)
A = iNzx (2.10)

= 3
and we have defined N;; = 3U;U; — 6;5, where U; = riet® and > riz =1.
i=1

This satisfies the zero curvature condition [Dy, D;] = 0, which is equivalent to
(90A1 — 61A0 — [Ao, Al] =0. (211)

The above equation results in the Landau-Lifshitz equation of motion [LF, BJ] given by
1
i0gN = 6[N, OIN] (2.12)
and, upon substitution of N;; = 3U;U; — d;; = 3rirjei(¢;j*¢~>¢) — 0;; into this equation, one
obtains equations (R.§) and (R.7), which are equivalent to the undeformed equations of
motion (see appendix [A]).
In terms of 7; and ¢;, the undeformed Lax pair is D, = 0, — Ay, where

(A = (B @2 with  p=0,1 (2.13)



and we define

. 3
3 3t = 31
(Bo)ij = i(rir; —rirj) + r,r](¢ ;) — 3irr; Z rktbk T+ — (37@73 5ij) 2,
k=1
(Bl)ij = ’L'(?)T’Z'T’j — 5@]) X . (214)

3. Strings in the ~;-deformed background

3.1 Equations of motion in the v;,-deformed background

We now generalize the previous results to strings in the 7;-deformed R x S° background,
which are again rotating in three orthogonal planes. The lagrangian for this ~y;-deformed
background in the fast motion limit (derived in [[[5]) is

3

A
L= ri¢i— 3 X (3.1)
=1

3 3 3 2 3
A3 Y (6 S ) - bdeea (S0
k=1 i=1

i=1 ij=1
1<

3
where 3, = 4,J =vJ and 7= > ;.

i=1
This ~;-deformed lagrangian (again re-defining 7 — %7’ and £ — —%E) can also be
3
written, using the constraint »_ 7“? =1, as
=1
> 1< 1
2 2
L= _Zri¢i+52(rg) +5 %
i=1 i=1
2
3 3 3
X Z%’QT? i + Z cmTrm | — | 95+ Z €jtm T +
i,j=1 I,;m=1 I,m=1

i<j
1 3
2
+5A <§—1 r?— 1) . (3.2)

Varying the above lagrangian with respect to r; and ¢; and then using the constraint
3

equation ’I“i2 = 1, which can be obtained by varying with respect to A, gives the ~;-
i=1
deformed equations of motion

3

T’;/ = —27“2‘{(2'5@' + Z EizmTiQTzzﬁm(QS; - QS; - Eilmﬁm) -

I,m=1

-5 Z €itmTi T (31 + m) (8] — D, — eilm’_Vi)} +

lml



2

3 3 3
Yy e [ [+ D e | = | b+ D e, +Ar;,  (3.3)
k=1 l7m:1 l7m:1
3 3 3
T = Zrk(rﬂ'k)’ b + Z cammre, | = | ok + Z emyirs, | | +
k=1 l,m=1 l,m=1
1 3 3 3
+3 Zri o +2 Z EitmNTmTm | — | o1 + 2 Z ermrmt | | - (3.4)
k=1 I,m=1 I,m=1

Now, assuming this constraint is satisfied, the above equations of motion (B.3) and (B.4)
are equivalent to

3
P 2 2. .
riry —rirj = 2riri(d; — ¢i) — QV“iV”j{ > €umririm (¢ — 6] — €itmm)

I,m=1

3
1 _ _
~3 > €imriTe (G + Tm) (@] — S, — Eum%)} +

Il,m=1
3
2.2 =
+ 27”1”“]’{ Z E5lmT; T} ’Ym((ﬁ; - ¢; - 6jlm")/m) -
I,m=1

3
1 _ _
=5 2 PG+ 36— b — ) |+

Il,m=1
r 2
3 3 3
2 / ~ 2 / _ 2
+rirg > i [ i+ D emmrn, | = [ S+ D emmAurn, -
k=1 I,m=1 I,m=1
2
3 3 3
2 / = .2 / _ 92
_7"“3‘27% ¢ + Z EjlmNTm | — | Ok + Z ERlm VT m , (3.5)
k=1 l,m=1 l,m=1
3 3 3
. . / / _ 2 / ~ .2
riry vy = szrk(nm) ¢; + Z €itm T | — | P + Z kmNTm | | + (3.6)
k=1 l,m=1 l,m=1
3 3 3
+7r; ri(rr )' ¢'~+ eamyre | — ¢’+ Exlrm T2 +
i k\T5Tk ' Fim VT m k kimYITm
k=1 I,m=1 I,m=1
1 3 3 3 i
o 2 " 2 = / " 9 _ /
4_274270] T (bz + EmNTmTm | — (bk; + ELmNTmTm +
k=1 l,m:l l,mzl ]
1 3 3 3 i
2 1 - / 7 - /
+§7°i7°j27“k j+2 Z ElmNTmTm | — o +2 Z ELlmYITmTm
k=1 l,m=1 l,m=1 ]

3.2 Transformation from the undeformed equations of motion to the ~;-de-
formed equations of motion

The transformation which takes the undeformed equations of motion into the ;-deformed



equations of motion is

3 3
= . B B 1 B B B
¢i = ¢;i+ Z GilmV”?TlQ’Ym(@ - (b; - 6ilm")/m) - 5 Z 6ilmTlQr?n (7l + Vm) ((b; - ¢lm - Eilm’Yi) >
I,m=1 I,m=1
- 3
&=+ Y CumNrm - (3.7)

I,m=1

Now, for this transformation to be valid, we must have (¢;) = (#,). Thus the com-
patibility condition, which must be satisfied, is

3 3
2 Z 6ilrrL'inTrnfnrn = 81{ Z eilmrzzrfﬁm((?; - (b; - Eilm:ym) -

l,m=1 l,m=1

3
1
~5 2 P )6 o et} (39
l,m=1

However, from the equation of motion (3.4), we know that

3 3 3
1
: 2.2 / — 2 / _ 92
T = 5 01 T Tk sz + Z €insInTs | — ¢k + Z €knsTnTs (3'9)
k=1 n,s=1 n,s=1
and thus
3
2 Z EilmNTmTm = (310)
I,m=1
3 3 3
~ .2 .2 / ~ .2 / ~ .2
=0 Z CGlmNTm Tk Qbm + Z EmnsInTs | — ¢k + Z €knsInTs
k,lom=1 n,s=1 n,s=1

By setting i = 1,2 and 3, and evaluating equations (B.§) and (B.1(Q) separately (see ap-
pendix ), these equations can be shown to be the same. Thus the compatibility condition
is automatically satisfied if the ~;-deformed equations of motion (and the constraint equa-
tion) are valid.

3.3 Lax pair in the v;-deformed background

The ~;-deformed Lax pair shall now be derived from the undeformed one following a similar
procedure to that discussed in 2.

First the ¢;-dependence of the undeformed Lax pair will be gauged away. The zero
curvature condition is [Dy, D1] = 0, where D, = 9, — A, with s = 0,1. This is equivalent
to [MDoM~1, MD;M~1] = 0, for any invertible matrix M, so we can change

Dy, — Dy=MD,M ' =0, + Mo,M ™ — MA,M". (3.11)
Thus an equivalent gauged Lax pair is

D,=08,—R,,  where R,=MAM - MM, (3.12)



We shall take M;; = iei‘;i6ij and thus Mif = —ie‘iéi&j. Therefore it follows from
equation (R.13) that the gauged undeformed Lax pair is f)ﬂ = 0, — Ry, where

(Ru)ij = (Bu)ij + Zau(Zz 5@‘ (3.13)

and thus, using the definition of (B,);;, we obtain

3 3 ~
(Ro)ij = 3 (rir; — Tgr]) S i (qb +<;5 ) 3ir;T; Zrkgbk :c—l— (37“27“] dij) 2 +ig; dij s

(3.14)
(Rl)ij = ’L'(?)T‘Z'T‘j — 5@]) x + ’LgZE; 5@']’ . (315)

We can now make use of the transformation (B.7) to obtain the gauged 7;-deformed
Lax pair D} = 9, — R}, where

) 3 3
31 _ ~
=TTy ¢; + Z eum’ylrfn + (b;-—i— Z ejlm'ylrfﬂ T —

. 3
(Ro')ij = 5 (rir 5
I,m=1 I,m=1

= riry)r+

31
—3irr; Zrk b + Z rmNre, | T+ B (3rirj — 6i5) 2% +

I,m=1

3
+i{¢z‘ + Y €T Am (S — &) — €imm) —

I,m=1
-3 Z 6zlmrl 'Yl + 7m)(¢; - ¢Im - Eilm’)/i)} 5ij ) (316)
lm 1
3
(Rl )l] 1(3”73 lJ) r+i| ¢+ Z Elm VT m ij - (3.17)

l,m=1
The zero curvature condition [DJ*, D}?] = 0 is equivalent to
R — Ry — Ry, R =0 (3.18)

and the equations thus obtained from this gauged 7;-deformed Lax pair (see appendix [0)
are equations (B.J) and (B.g), which are equivalent to the v;-deformed equations of motion,
and the compatibility condition, which follows directly from these equations motion.

4. Conclusion

In this paper we have considered strings in R x S° (at the center of AdSs) rotating in
three orthogonal planes in the non-supersymmetric 7;-deformed background, which was
constructed in [[) using a series of three TsT-transformations. Our starting point has
been the string action in the fast motion limit, in which the total angular momentum
J = Ji+ Jo+ Js is large and we consider the leading order in \ = % (derived in [[[5]). This



action is equivalent on the gauge theory side to the effective action of the corresponding ~;-
deformed spin chain in the continuum limit, in which the length of the spin chain becomes
large [[5].

We have first reviewed the construction in [LF, P3| of a Lax pair in the undeformed
case. It was then demonstrated that there exists a consistent transformation which takes
the undeformed equations of motion into the ~y;-deformed equations of motion. This was
used to construct a Lax pair describing rotating strings in the the ~;-deformed background.
Thus it was shown that the ~;-deformed theory remains integrable in the fast motion limit.

A related topic for further investigation would be to attempt to calculate conserved
quantities which follow from this Lax pair. Specifically one could try to construct the
monodromy matrix and thus the quasi-momenta as a function of the spectral parameter for
the undeformed and v;-deformed theories in the fast motion limit. Another interesting point
of discussion is the physical meaning of the transformation which was used to construct

the ~;-deformed Lax pair.
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A. Derivation of the equations of motion from the Lax pair in the unde-
formed background

A.1 Derivation of the Landau-Lifshitz equation
The Lax pair is D, = 8, — A, [13], where

1 :
Ag = £[N, 0Nz + %Nﬁ, (A1)

The equation which must be satisfied is
0pA1 — 0149 — [Ap, A1] = 0. (A.3)
Note also that N satisfies the constraints Tr(N) = 0 and N? = N + 2 [1§, B3, due to
3
the definition N;; = 3U;U; — 6,5, where U; = rie'® . and the constraint > 7“? =1.
i=1
Equation ([A.3), written in terms of N, is

7

1 3i
i Na — 0[N, N — éaleZ ~ S[IN.0N]. Nla® = 0 (A.4)
and thus, equating different orders in z,
1
1N = 631[N, O1N], (A.5)



g@N:—@M@Nww. (A.6)

Equation ([A.6)) follows from the constraint N? = N 42 and equation ([A.5) is equivalent
to the Landau-Lifshitz equation of motion [F, given by

1
i N = [N, IIN]. (A7)

A.2 Derivation of the undeformed equations of motion in terms of r; and ¢;

from the Landau-Lifshitz equation

The definition of N in component form is N;; = 37“@-7“]'6"((51'_(51') — 0;5. Thus we obtain

OgN;j =3 [(7“,7"] + rit;) + mrj(qz <Z )} G , (A.8)
O1Ni; = 3 [(’I“g’l“j + rir ) + Z’I“Z’I“J( o gz; )} ~6) (A.9)
and hence
ORNiy = 3{(rmy 20l rir)) 4+ 2i(riy) (6 — )+ iriry (9 = 6) = riry (9 = 1)) /01—
(A.10)
from which it follows that
3 3
[N,OfNij = > NuwdiNij — > 0i NNy (A.11)
k=1 k=1
3 =
= 9{[7“,%9’ —riri ]+ 24 |7 Z ri(rir;) ( - -1 Zrk (rire) (@), — &%) | +
k=1

+1

— [TZ_]

Now we use the Landau-Lifshitz equation ([A.7) to obtain

’I“Z‘T‘j

A p——— Z r2 (o) — 7’)] -
1

2 (@) — o) —Tﬂ"erk & - )]}ei@—%. (A.12)

N

B
Il w
- Il

i(firy + ritg) — rirj (95 — ¢i) =

= g —rr 2

3 - -

ri > k(e (6 — —ngrwmc ) (0 — %)

k=1

+1

3 = = = =
rirj Z (¢ — o) —rir; Z (e — ¢§')] -
— [Tﬂ"g Z Ti qS qﬁk — 1Ty Z rk 5 q:5; ] } . (A.13)

Therefore, equating the real and imaginary parts of the above equation, we find that

,10,



Re: rjri —rir! —2TZTJ(¢J gbz +T27‘]Zrk gbz qﬁk —T’Z’I“JZT’k qS] qﬁk) ,

3

~ ~ 3 ~
Im:  7rj +rify =715 Zrk(mrk)'(qﬁ; — Gt Zrk(rjrk)’(qﬁ; — G +
k=1

k=1

v myzrk @ - )+ merk (@ —30).

(A.14)

which can be compared with equations (R.6) and (R.7), and thus seen to be equivalent to

the undeformed equations of motion.

B. Compatibility condition for the transformation from the undeformed

equations of motion to the 7;-deformed equations of motion

The compatibility condition for the transformation is

3 3
2 = . ) . 2,2 (Y A _
ElmNTmTm = 01 ElmT; 1] 'Ym((ﬁz (bl Ezlme)
Il,m=1 Il,m=1

3
1
=5 D im0+ Tm) (9] — Ol eilm%)}. (B.1)

Il,m=1
The ~;-deformed equation of motion (B.4) gives

3
2 5 EilmNTmTm =
l,m=1

3

3 3
= 61{ Z 6i1m717”72n7“/% ¢;n+ Z Emnsi/nrg - ¢§§ + Z Eknsﬁnrg

k,lm=1 n,s=1 n,s=1
First we shall evaulate

3 1 3

{1} = Z EilmTizT'lQ’iym((bé—(ﬁ;_eilm:Ym)__ Z lemrlr (’Yl"i_’)/m)((b - (b;n -

2
l,m=1 l,m=1

for ¢ = 1,2 and 3 as follows:

{1}z = rirdys(¢) — ¢h — 43) + rir3¥a(dh — @) — 32) — 313 (Y2 + ¥3) (dh — &5
{1}ica = rir3ys(¢) — ¢ — As) + r3r3yi(dh — ¢ — %1) — rirs(n + 7s)(dh — ¢}
{1}ics = rir3a(ds — ¢1 — F2) + r3r3yi(dh — 5 — F1) — rir3 (1 + Fo) (¢ — b

Now we shall determine

3 3 3
_ ~ 2.2 / =~ .2 / = 22
{2} = E ElmNTmTk | | &m + E , €mnsTnTs | — | O + § : €knsTInT's
k,l,m=1 n,s=1 n,s=1

— 11 —

}. (B.2)

€ilm Vi)

(B.3)

- :}/1)7(]3'4)
- 72)’(]35)

—73)-(B.6)

(B.7)



for ¢ = 1,2 and 3 as follows:

{2Viz1 = 3or3 (¢ + Y173 — Yari) — Yar3(dh + YarT — N1r3) — Vors (r1dh + righ + rids) +
+ 3375 (rid) + 13 dh + 1303
= For3[(r] + 73 + r3) s + 113 — Fori] — ar3[(r} + 3 +13)eh + Yari — Jrd] —
— ar3 (e + 15 + r3¢5) + Far3 (17 + r3¢h + righ) (B.8)
= rir3ys(@h — ¢ — Y3) + rir3va(dh — ) — Y2) — 1575 (Y2 + Ya) (¢ — &5 — ).,
{2}im2 = Y3r7 (@) +F2r3 — Yar3) — N1r3 (P + Y15 — Fori) — Asri(ridh + 3¢ + ridh) +
+r3(rid) + righ + r3dh)
= Yaril(r] + 75 4+ r3) ¢ + J2r3 — Fard] — Mr3l(r} + 3 4+ 13) s + Nurs — Feri] —
— 3313 (r1 ) + 13 + r3¢s) + Nr3(ridh + righ + 13¢5) (B.9)
= rir373(0) — ¢ — 73) + rar3(dh — ¢ — A1) — rir3 (T + F3) (B — 1 — F2)
{2izs = Nr3 (¢ +YsrT — 173) — Yori () + Yars — Yar3) — Virs(ridh + ridh +r3dh) +
+3ori (¢ + righ + r3d5)
= Nr3[(r] + 75 4+ r3) s + Aart — N3] — Rert[(F + 5+ 13) ¢ + Yard — Fard] —
— T3 (rie) + 15 + r305) + Fort (17 + r3eh + ridh) (B.10)
= rIr3%2(dh — ¢) — Y2) + raravi(dh — 5 — Y1) — rivs (M1 + Y2) (@) — ¢ — 3)
3
using the constraint > 72 = 1. We have thus show that {1} = {2} and therefore the

i=1
compatibility condition follows from the ~y;-deformed equations of motion.

C. Derivation of the equations of motion from the gauged Lax pair in the
v;~deformed background

The gauged v;-deformed Lax pair is D) = 9, — R}/, where

: 3 3
. 3 31 _ _
(R3")ij = 5(7%'7“;' —rirj) @+ 5 i Gt Y cum T |+ | 05 D s || x -

l,m=1 l,m=1

3 3 .
, _ 31
=317 g ri | o) + E emre, | T+ 5(37373- — &) o2+
k=1

I,m=1
) 3
+Z{¢z + Z eilmT?T?’Vm(QS; - (Z% - Eilmﬁ/m) -
I,m=1
1 3
—5 > €umrirm (i + Tm) (@] — S — Gilm%)} dij s (C.1)
l,m=1
3
RYY.. — i(3rirs — 8: ; ! A2 8 C.2
( 1 )Z] Z( 775 z]) r+i| ¢+ Z ElmNTm ij - ( . )

I,m=1

- 12 —



The zero curvature condition
DR — IRy — R, RY]=0 (C.3)

must now be satisfied.

We substitute equations ([C.1]) and ([C.2) into this condition and equate different orders
of the spectral parameter x as follows:
O(2%) : At zeroth order in the spectral parameter we obtain

3 3
i | ¢i+ D camWirn, | 6ij — 261{(751‘ + > €umririTm(d; — ¢ — €imTm)

l,m=1 I,m=1

3
1
—3 Z itmTiT e (Y1 + Fm) (D) — Dy — Eum%)} 0i; =0 (C4)

I,m=1

and therefore

3 3
0( > €amrs,) = 31{ > €imririAm (8 — &) — €itmTm)

l,m=1 l,m=1

3
1 o _
B 5 Z eilmleTgﬂ(% + Wm)(gb; - gb;n - eilm'Yi)} : (C5)
I,m=1
This is just the compatibility condition for the transformation from the undeformed
equations of motion to the 7;-deformed equations of motion.
O(z'): At first order in the spectral parameter we find that

—rirj) =

s . 3
3i(riry + rivy) — §(rir;~'

: 3 3
31 _ -
—5 0L rir Gt Y eaum N | | O+ D €, +

l,m=1 l,m=1

3 3
+3i0; TiT; ZT}% (b;g + Z lem’?ﬁ; + 37“Z‘Tj((bi — (b]) +

k=1 I,m=1
3
2.2 / / =
+3Ti7"j{ Z EilmT; T 'Ym(gbz — ¢ — 6ilm’ym) -
I,m=1

3
1 _ _
-3 > Citmriro, (i + Tm) (8] — & — Gilm%‘)} -
I,m=1
3

—37“@'7“]‘{ Z Ejlmrjz‘rlQrs/m(@; - Q% - 6jlm'7m) -

I,m=1

3
1 _ _ _
=5 D im0+ Tm) (6] = & — Eﬂm%')} +

I,m=1
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31
+ 5 (7“2‘7“,‘

Il,m=1 I,m=1

3 3
3 _ _
— Tl G+ Y CumTrm | | O+ DY s,

l,m=1 l,m=1

3 3
Qb; + Z einsﬁ/nrz - Qb; + Z Ejnsﬁ/nrg +

n,s=1 n,s=1

3 3
2 / _ 92
+ 3rir; E e | &) + E ElmNTm | X
k=1

Il,m=1

3 3
X ¢; + Z einsﬁnr‘? - (b; + Z ejns:)/nrg =0.

n,s=1 n,s=1
Thus, equating the real and imaginary parts, we obtain

Re: ré'rj — rir;' = 27",~7"j(<75j — qﬁ,) —

3
—QV“iV”j{ > €imririTm (8 — &) — €itmVm) —

l,m=1

3
1 _ _
—5 > €mrirm (i + Tm) (@] — S, — Eum%)} +
I,m=1
3

+27“z‘7"j{ > umririm (8 — ¢ — €jimTm) —

l,m=1

3
1 _ _ _
—5 E ejszQ?”?ﬂ(’Yl + 'Ym)((b; - (b;n - Ejlm’}/j)} +

l,m=1
2 2
3 3
/ = .2 / _ 2
+rir; | | & + E EimNrm | — | 95+ E €jlm VT m
Il,m=1 Il,m=1
3 3
o [ _ 2
—27“1‘7“3‘5 e | Ok + E Eltm T | X
k=1 l,m=1

3 3
X[ QS; + Z Ez’nsﬁn"ﬂg - gb; + Z Ejnsﬁnrg :| s

n,s=1 n,s=1

3 3
. . 1 _ _
Im: TiTj Tty = 561{7“irj [ gb; + Z €z‘lm717"72n + + gb; + Z GjIleT}Qn

l,m=1

3 3
2o _ 9
-0 W‘jE T | Ok + E ERlm VT m, -
k=1

Il,m=1
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3 3
/ / = .2 / _ 2
i rirj) (bz + E ElmNTm | — ¢j + § Eilm VT m -

l,m=1

(C.6)

(C.7)

l)-



3 3
1
—5(7%'7”; —7“,"73‘)[ G+ Y emNrm | = | 5+ D €imrr, ] (C.8)

I,m=1 I,m=1
Now equation ([C.7) is equivalent to

riry — m”” = 27%7”](% ¢,) —

3
—QV“iV”j{ > CimririTm (8 — 6] — €itmVm) —

I,m=1

-3 Z 6llmrl 7l + 7m)(¢; - ¢Im - eilm’Yi)} +

lm 1
3
+27”i74j{ Z Ejlmr]zrfﬁm((ﬁ;’ - ¢; - 6jlrrb;}/m) -
I,m=1
1 3
—> > i (T Am) (@] — G — €im¥s) ¢+
2 1 1
=

3 3
+rir; ZTI% ¢; + Z cimTrm | = | ok + Z Ektm VT
k=1

I,m=1 I,m=1

I,m=1 I,m=1

which can be seen by multiplying out the last two squared terms and noting that 2 =1.

3 i 3
—rirg Yy i [ 5+ D i, | = | ok + Z Ekim T ]
k=1
3
Z

Equation (C.§) can be written as

3 3
i . 1 _ _
rirj ity = g (rers + i) | | @5 + Z camVire, | + | ¢+ Z Eimrs, | | +

I,m=1 I,m=1 ]
1 3 3
1 - / i - /
+§7“,~7"j ¢; +2 Z EilmNTmTm | + | @5 + 2 Z Eilm VT mTm —
I,m=1 I,m=1
3 3
/ / 2 / = .2
—(m”j +7rj) Z ri. | &k + Z Eklm T | —
k=1 l,m=1

=21y Z rery | O+ Z exmNTo | —

I,m=1

3 3
2 /! — /
— Tl Z e | r + 2 Z ERlm VT mTm
k=1

I,m=1
1 3 3
—5(7%'7”; —rry) | | 9+ Z Citm Ty | — ¢ + Z Gjlm’?ﬁ?n (C.10)
Il,m=1 l,m=1
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3 3
/ / = .2 / / _ 2
=mrri | o+ E EitmNiTm | +rir; | &5+ E EjmNTm | —

I,m=1 I,m=1

3 3
/ / — 2
—2rirjg Ty | ¢ + E EkimNTm | —
k=1

l,m=1

3 3 3
/ 2 / = .2 ! 2 / = .2
—W“jzrk br + Z ERlm N m | — TiTj ZTk br + Z EklmNTm | +
k=1

l,m=1 k=1 l,m=1
1 3 1 3
/! 2 — / /! 2 — /
+§Tﬂ“j o; + CitmViTmTm | 57T ¢ + EilmVTmTm | —
I,m=1 I,m=1
3 3

T 2 42 YT C.11

— Ty L [an ElmVTmTm | » ( . )
k=1 I,m=1

3 3
which implies, if one uses the constraint riz =1 and thus ) r;7, = 0, that

i=1 i=1
3 3 3
. . / / _ 2 / ~ .2
Tirj 4+ ity =T Zrk(rirk) o + Z EiimNTm | — | &k + Z EklmVITm + (C.12)
k=1 l,m=1 l,m=1
3 3 3
. ! / = .2 / = .2
> relrre) || 5+ D €mArn | = | O+ D emmArn || +
k=1 l,m=1 l,m=1
3 3 3 i
1 2 " 2 — / Ui 9 _ /
TG )Tk i T EmNTmTm | — | Pkt €lmVTmTm | | +
k=1 l,m=1 l,m=1 ]
1 3 3 3 i
2 /! — / /! — !
4—2T¢sz7“k G2 D EmNrmry, | = | A2 Y ekimNrmrh,
k=1 l,m=1 I,m=1 i

Equations (C.9) and (C.12) are the same as equations (B.H) and (B.6), and are thus
equivalent to the v;-deformed equations of motion.
O(x?) : At second order in the spectral parameter, one obtains an equation which is

3 3
trivially satisfied, again using the constraint > r? = 1 and hence that Y 77} = 0.
i=1 i=1
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